##plugins.themes.bootstrap3.article.main##

محمد معانی جو لیلا خدایی

چکیده

کانسار آهن سراب-3 در شرق شهرستان تکاب و درشمال زون سنندج- سیرجان واقع شده است. در اثر جایگیری توده نفوذی با ترکیب حدواسط تا اسیدی در سنگ‌های آهکی منطقه، کانه‌‌زایی آهن ± سولفید در منطقه رخداد است. طبق شواهد، کانسارسراب-3 متشکل از سه زیر پهنه برون اسکارن، درون اسکارن و کانسنگ آهن ± سولفید است. فرآیندهای اسکارنی شدن به دو مرحله پیش رونده و پسرونده قابل تقسیم است. در مرحله پیشرونده، جایگیری توده نفوذیدر سنگ‌های کربناتی باعث دگرگونی ایزوشیمیایی سنگ‌های درونگیر و تبلور مجدد کلسیت‌ها و تبدیل آن‌ها به آهک‌های دولومیتی در نزدیکی توده نفوذی شده است. تبلور توده نفوذی باعث تکامل فاز سیال هیدروترمال و نفوذ آن به داخل سنگ‌های درونگیر شده است. واکنش این سیالات با سنگ میزبان باعث ایجاد دگرسانی متاسوماتیک گسترده شده که توسط تشکیل کانی‌های کالک سیلیکاته بی آب نظیر آندرادیت و دیوپسید مشخص می‌شود. در مرحله پسرونده با تغییر شرایط فیزیکوشیمیایی نظیر کاهش دما کانی‌های کالک سیلیکاته بی آب به کانی‌های، کالک سیلیکاته آبدار (ترمولیت– اکتینولیت، اپیدوت)، سیلیکاته (کلریت، سرپانتین، تالک فلوگوپیت)، اکسیدی (مگنتیت و هماتیت)، سولفیدی (پیریت، کالکوپیریت) و کربناته (کلسیت) تبدیل شده‌اند. به دنبال آن، فعالیت‌های تأخیری، موجب تشکیل رگه‌های کوارتز- کلسیت کانه‌دار در منطقه شده است. در مرحله سوپرژن نیز، طی فرآیند اکسایش در بخش های سطحی و کم ژرفای کانسار، هماتیت‌های مارتیتی، کانی‌های أکسی-هیدروکسیدی آهن، کالکوسیت، کوولیت و کلریت (پنین) تشکیل شده است. مطالعات تجزیه نقطه‌ای الکترونی (EPMA) بر روی کانی‌های مگنتیت و هماتیت گویای مقدار بالای متوسط عناصر Mn(07/0 درصد وزنی) و Al (68/0 درصد وزنی) و مقادیر پایین متوسط عناصرTi (02/0 درصد وزنی) وV (01/0 درصد وزنی) است. با توجه به شواهد کانی‌شناسی اسکارن و ژئوشیمی مگنتیت، کانه‌زایی آهن درهمبری واحدهای کربنات و توده نفوذی، گویای خاستگاه اسکارنی کانسار آهن سراب-3 است.

جزئیات مقاله

مراجع
Aghanabati, A., 2004. Geology of Iran. Geological Survey of Iran, Tehran, 586 pp.
Azizi, H., 2003. Petrogenesis of contact metamorphic rocks and related Fe skarn in Shahrakarea, east of Takab. M.Sc. Thesis, University of Tehran, Tehran, Iran, 134 pp. (in Persian with English abstract)
Barker, D. S., 1995. Crystalization and alteration of quartz monzonite iron springs mining district, Uta: relation to association iron deposits. Economic Geology, 90(8): 2197–2217.
Barton, P.B.JR. and Skinner, B.J., 1979. Sulfide mineral stabilities. In: H.L. Barnes (Editor), Geochemistry of Hydrothermal Ore Deposit. John Wiley and Sons, New York, pp. 278–403.
Berman, R.G., Brown, T.H. and Greenwood, H.J., 1985. An internally consistent thermodynamic data base for minerals in the system Na2O–K2O–CaO– MgO–FeO–SiO2–Al2O3–Fe2O3–TiO2– H2O–CO2. Atomic Energy of Canada, Chalk River, Report 377, 62 pp.
Boomeri, M., Nakashima, K. and Lentz, D.R., 2009. The Miduk porphyry Cu deposit, Kerman, Iran: A geochemicalanalysis of the potassic zone including halogenelement systematics related to Cu mineralization processes. Journal of Geochemical Exploration, 103(1): 17–29.
Bucher, K. and Frey, M., 1994. Petrogenesis of metamorphic rocks, 6th edition complete revision of winkler's textbook. Springer Science, London, 428 pp.
Calagari, A.A. and Hosseinzadeh, G., 2006. The Mineralogy of copper-bearing skarn to the east of the Sungun-Chayriver, East-Azarbaidjan, Iran. Journal of Asian Earth Sciences, 28(4-6): 423–438.
Dare, S.A.S., Barnes, S.J. and Beaudoin, G., 2012. Variation in trace element content of magnetitecrystallized from a fractionating sulfide liquid, Sudbury, Canada: implications forprovenance discrimination. Geochemica et Cosmochimca Acta, 88(1): 27–50.
Dare, S.A., Barnes, S.J., Beaudoin, G., Méric, J., Boutroy, E. and Potvin- Doucet, C., 2014. Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, 49(7): 785–796.
Deer, W.A., Howie, R.A and Zussman, J., 1992. An introduction to the rock forming minerals. Longman, Harlow, Wiley, New York, 712 pp.
Dupuis, C. and Beaudoin, G., 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita, 46(4): 319–335.
Einaudi, M.T., 1977. Petrogenesis of copper-bearingskarn at the Mason Valley mine, Yerington district, Nevada. Economic Geology, 72(5): 769–795.
Einaudi, M.T., Meinert, L.D. and Newberry, R.J., 1981. Skarn deposits. Economic Geology, 75th Anniversay, 24(3): 317–391.
Einaudi, M.T. and Burt, D.M., 1982. Introduction-terminology, classification and composition of skarn deposits. Economic Geology, 77(4): 745–754.
Fenodi, M. and Sayaerh, A.R., 2000. Geological map of HasanabadYasoukand, scale 1:100,000. Geological Survey of Iran.
Ferdowsi, R., 2011. The Study of metasomatic alteration in the around granitoids intrusion KamtelKharvana- Eastern Azarbaijan. M.Sc. Thesis, Tabriz University, Tabriz, Iran, 123 pp. (in Persian with English abstract).
Franchini, M.B., Meinert, L.D. and Vallés, J.M., 2002. First occurrence of ilvaite in a Au skarn deposit. Economic Geology, 97(5): 1119–1126.
Frietsch, R., 1973. The Origin of the Kiruna iron ores. Geologiska Föreningen i Stockholm Förhandlingar, 95(4): 375−380.
Frost, B.R., 1991. Stability of oxide minerals in metamorphic rocks. In: D.H. Lindsley (Editor), Reviews in Mineralogy. Oxide Minerals: Petrologic and magnetic significance. Mineralogical Society of America, Washington, PP. 469–487.
Ghiorso, M.S. and Sack, O., 1991. Thermochemistry of the oxide minerals. In: D.H. Lindsley (Editor), Oxide Minerals: Petrologic and Magnetic Significance. Mineralogical Society, America, pp. 221–264.
Grant, F.S., 1985. Aeromagnetics, geology and ore environments, I. magnetite in igneous, sedimentary and metamorphic rocks: An overview. Geoexploration, 23(3): 303–333.
Guilbert, J.M. and Park, C.F., 1997. The Geology of ore deposits. W.H. Freeman and Company, Oxford and New York, 985 pp.
Hammarstrom, J.M., Orris, G.J., Bliss, J.D. and Theodore, T.G., 1989. A Deposit Model for Gold-Bearing Skarns; Fifth Annual V.E. McKelvey Forum on Mineral and Energy Resources. United States Geological Survey Circular, 1035(1): 27–28.
Harriss, N.B. and Einaudi, M.T., 1982. Skarn deposits in the Yeringtin, Nevada: Metasomatic skarn evolution near Ludwig. Economic Geology, 77(4): 877–898.
Hosseinzadeh, Gh., 1999. Investigation ofcopperskarn-type deposit, Anjerd, northeastern of Ahar. M.Sc. Thesis, Tabriz University, Tabriz, Iran, 118 pp. (in Persian with English abstract)
Hu, H., Lentz, D., Li, J., McCabral, T., Zhao, X. and Hall, D., 2015. REE quilibration processes in magnetite from iron skarn deposits. Economic Geology, 110(1): 1–8.
Huberty, J.M., Konishi, H., Heck, P.R., Fournelle, J.H., Valley, J.W. and Xu, H., 2012. Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia. American Mineralogist, 97(1): 26–37.
Karimzadeh Somarin, A. and Moayyed, M., 2002. Granite and gabbrodiorite-associated skarn deposits of NW Iran. Ore Geology Reviews, 20(3): 127–138.
Kimia Maaden Sepahan Company., 2011. Simiplified geological map of Sarab-3 deposit, scale 1:1000. Geological Survey of Iran.
Khodaei, L., 2015. Mineralogy and geochemistry of Sarab-3 Fe deposit (Shahrak, East ofTakab). M.Sc. Thesis, Bu-Ali Sina University, Hamedan, Iran, 164 pp. (in Persian with English abstract)
Lentz, D.R., 2005. Mass-balance analysis of mineralized skarn systems: Implications for eplacement processes, carbonate mobility, and permeability evolution. In: J. Mao and F.P. Bierlein (Editors), Mineral Deposit Research: Meeting the Global Challenge. Proceedings of the Biennial SGA Meeting, Beijing, China, pp. 421–424.
Lindsley, D.H., 1976. The Crystal chemistry and structure of oxide minerals as exemplified by the Fe–Ti oxides. In: D. Rumble III (Editor), Oxide Minerals. Review Mineral, Mineral Society, America, pp. L1–L60.
Maanijou, M., Rasa, E. and Lentz, D., 2012. Petrology, geochemistry, and stable isotope studies of the Chehelkureh Cu-Zn-Pb deposit, Zahedan, Iran. Economic Geology, 107(4): 683–712.
Maanijou, M. and Salemi, R., 2015. Mineralogy, chemistry of magnetite and genesis of Korkora-1 iron deposit (East of Takab). Journal of Economic Geology, 6(2): 355-376. (in Persian with English abstract)
Marschik, R., Spikings, R. and Kuscu, I., 2008. Geochronology and stable isotope signature ofalteration related to hydrothermal magnetite ores in Central Anatolia, Turkey. Mineralium Deposita, 43(1): 111–124.
McClenaghan, M.B., 2005. Indicator mineral methods in mineral exploration: geochemistry, exploration environment analysis. Geological Society of London, 5(3): 233–245.
Meinert, L.D., 1992. Skarn and skarn deposits. Geosciences Canada, 19(4): 145–162.
Meinert, L.D., Dipple, G.M. and Nicolescu, S., 2005. World skarn deposits. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb and J.P. Richards (Editors), Economic geology 100th anniversary volume. Society of Economic Geologists, Colorado, pp. 299–336.
Mollai, H., Sharma, R. and Pe-PiPer, G., 2009. Coppermineralization around the Ahar (NW Iran): evidence for evolution and the origin of the skarnore deposit. Ore Geology Reviews, 35(3–4):401–414.
Monteiro, L.V.S., Xavier, R.P., Hitzman, M.W., Juliani, C., Filho, C.R.S. and Carvalho, E.R., 2008. Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide–copper –gold deposit, Carajas Mineral Province, Brazil. Ore Geology Reviews, 34(3): 317–336.
Mucke, A. and Cabral, A.R., 2005. Redox and nonredox reactions of magnetite and hematite in rocks.Chemie der Erde, 65(3): 271–278.
Nadoll, N., Angerer, Th., Mauk, J., French., D. and Walshe, J. 2014. The Chemistry of hydrothermal magnetite: A Review. Ore Geology Reviews, 61(1): 1–32.
Nadoll, P., Mauk, J.L., Hayes, T.S., Koenig, A.E. and Box, S.E., 2012. Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States. Economic Geology, 107(6):1275–1292.
Niiranen, T., Manttari, I., Poutiainen, M., Nicholas, H.S. and Jodie, A., 2005. Genesis of Palaeoproterozoic iron skarns in the Misi region, northern Finland. Mineralium Deposita, 40(2): 192–217.
Nystrom, J.O. and Henriquez, F., 1994. Magmatic features of iron ore of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry. Economic Geology, 89(4): 820–839.
Oyman, T., 2010. Geochemistry, mineralogy and genesis of the Ayazmant Fe-Cu skarn deposition in Ayvalik, (Balikesir), Turkey. Ore Geology Reviews, 37(3): 175–201.
Park, Jr. C.F. and Mac Diarmid, R.A., 1975. Ore deposits. W.H. Freeman and Company, SanFrancisco, 529 pp.
Pournik, P., 2007. Evaluation of ore reserve of Shahrak Fe deposit report. Sabanour Steel Providing Material Company, Tehran, Internal Report 1, 350 pp. (in Persian)
Ramdohr, P., 1980. The Ore minerals and their inter growths. Pergamon Press, Oxford, 1205 pp.
Razjigaeva, N.G. and Naumova, V.V., 1992. Trace element composition of detrital magnetite from coastal sediments of Northwestern Japan Sea for provenance study. Journal of Sedimentary and Petrology, 62(5): 802−809.
Reed, M.H., 1997. Hidrotermal alteration and its relationships to ore fluid composition. In: H.L. Barnes (Editor), Geochemistry of Hidrotermal Ore Deposits. John Wiley, London, pp. 303–358.
Salemi, R., 2013. The study of fluid inclusion and geochemistry of Korkora-1 iron deposit (Shahrak, east Takab). M.Sc. Thesis, Bu-Ali Sina University, Hamedan, Iran, 186 pp. (in Persian with English abstract)
Schwartz, M.O. and Melcher, F., 2004. The Falémé iron district, Senegal. Economic Geology, 99(5): 917–939.
Scott, S.D., 1974. Experimental methods in sulfide synthesis. In: P.H. Ribbe (Editor), Sulfide Mineralogy. Mineralogical Society, American, pp. S1–S38.
Sheikhi, R., 1995. Economic geology study of Shahrak Fe deposit, east of Takab. M.Sc.Thesis, Shahid Beheshti University, Tehran, Iran, 161 pp. (in Persian with English abstract)
Shelly, D., 1993. Microscopic study of igneous and metamorphic rock.Champan and Hall, London, 630 pp.
Shimazaki, H., 1980. Characteristics of skarn deposits and related magmatism in Japan. Economic Geology, 75(2): 173–183.
Siahcheshm, K., 2002. Mineralogy, alteration and metasomaticevolutionofPahnavarskarn deposit (east of SiahRoud). M.Sc. Thesis, Tabriz University, Tabriz, Iran, 139 pp. (in Persian with English abstract)
Singoyi, B. and Zaw, K., 2001. A petrological and fluid inclusion study of magnetite–scheeliteskarn mineralization at Kara, northwestern Tasmania: implications for ore genesis. Chemistry Geology, 173:(1–3): 239–253.
Tallarico, F.H.B., Figueiredo, B.R., Groves, D.I., Kositcin, N., McNaughton, N.J., Fletcher, I.R. and Rego, J.L., 2005. Geology and shrimp U–Pb geochronology of the Igarapé Bahia deposit, Carajas copper–gold belt, Brazil: An Archean (2.57 Ga) example of iron–oxide Cu–Au–(U– REE) mineralization. Economic Geology, 100(1):7–28.
Vallance, J., Fontboté, L., Chiaradia, M., Markowski, A., Schmidt, S. and Vennemann, T., 2009. Magmatic-dominated fluid evolution in the Jurassic Nambija gold skarn deposits (southeastern Ecuador). Mineralium Deposita, 44(4): 389–413.
Whitney, D.L. and Evans, B.V., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187.
Xu, G. and Lin, X., 2010. Geology and geochemistry of the Changlongshanskarn iron deposit, Anhui province, China. Ore Geology Reviews, 16(1): 91–106.
ارجاع به مقاله
معانی جوم., & خداییل. (۱۳۹۷-۰۲-۰۳). زمین شناسی، کانی‌شناسی و مطالعه ریزکاو الکترونی در کانسار آهن سراب-3، جنوب غرب منطقه معدنی شهرک (شرق تکاب). زمین‌شناسی اقتصادی, 10(1), 267-293. https://doi.org/10.22067/econg.v10i1.56522
نوع مقاله
علمی- پژوهشی