رخداد معدنی مس- نقره± طلا همراه با اکسید آهن ساق، جنوب‌شرقی تربت حیدریه: شواهدی از زمین‌شناسی، کانه‌زایی، زمین‌شیمی و سیالات درگیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه زمین شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد، گروه زمین شناسی و گروه پژوهشی اکتشاف ذخایر معدنی شرق ایران، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

3 استاد، گروه زمین شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

رخداد معدنی ساق در جنوب شرقی تربت‌ حیدریه، استان خراسان رضوی و در بخش شرقی کمربند ماگمایی خواف- کاشمر– بردسکن (KKBMB) واقع شده است. واحدهای سنگی منطقه به دو دسته کلی توده‌های نفوذی (مونزونیت، مونزودیوریت، دیوریت و سینیت) در نیمه‌جنوبی و واحد کنگلومرا در نیمه‌شمالی تقسیم می‌شود. کانی‌سازی در یک زون پیوسته به وسعت حدود یک کیلومتر مربع به شکل استوک ورک دیده می‌شود ولی در برخی نقاط روند خطی داشته و در توده‌های نفوذی تشکیل شده است. کانی‌های اولیه شامل اسپیکیولاریت، کالکوپیریت، پیریت، گالن و سولفوسالت بوده و کانی‌های ثانویه شامل مالاکیت، گوتیت، هماتیت، کالکوزیت، کوولیت و آنگلزیت است. بافت کانه‌زایی به صورت رگه- رگچه، پراکنده، جانشینی ثانویه و کلوفرم عمدتا همراه با آلتراسیون کلریتی- سیلیسی شدید دیده می‌شود. میانگین مقدار مس 8/0 با بیشینه بیش از 3 درصد، میانگین مقدار نقره 4/24 با بیشینه بیش از 113 گرم درتن، میانگین مقدار طلا 44 با بیشینه 250 میلی گرم در تن، میانگین مقدار سرب 761 گرم در تن با بیشینه 4/0 درصد و میانگین مقدار روی 430 گرم در تن با بیشینه 1/0 درصد است. دمای تشکیل سیال کانه‌ساز بین 159 تا 328 درجه سانتیگراد و شوری بین 2/7 تا 7/16 درصد وزنی است. مخلوط‌شدگی سیال‌ ماگمایی با آب‌های جوی با دما و شوری پایین مهمترین مکانیزم تشکیل کانی‌سازی بوده است. برپایه شواهد موقعیت تکتونیکی، سنگ‌شناسی، نوع آلتراسیون، شکل و حالت کانی‌سازی، وجود اسپیکیولاریت فراوان همراه با آنومالی مس، نقره و طلا، احتمالا منطقه ساق از نوع مس-نقره ± طلا همراه با اکسید آهن (Iron oxide copper-gold) است.

کلیدواژه‌ها


Almasi, A., Karimpour, M.H., Ebrahimi Nasrabadi, Kh., Rahimi, B., KlÖtzli, U. and Santos, J.F., 2015. Geology, mineralization, U-Pb dating and Sr-Nd isotope geochemistry of intrusive bodies in northeast of Kashmar. Journal of Economic Geology, 7(1): 69–90. (in Persian with English abstract) https://doi.org/10.22067/econg.v7i1.44721
Barton, M.D. and Johnson, D.A., 1996. Evaporitic-source model for igneous-related Fe oxide–(REE–Cu–Au–U) mineralization. Geology, 24(3): 259–262. https://doi.org/10.1130/0091-7613(1996)024<0259:ESMFIR>2.3.CO;2
Beane, R.E., 1983. The Magmatic–Meteoric Transition. Geothermal Resources Council, Special Report 13, pp. 245–253.
Behnamnia, O., Malekzadeh Shafaroudi, A., Mazloumi Bajestani, A. and Hajimirzajan, H., 2023. Mineralization, geochemistry and fluid inclusion studies in the Chenar prospect area, east of Kashmar: Evidence of copper mineralization with iron oxide. Advanced Applied Geological Journl. In press. (in Persian with English abstract)
Chen, H., Kyser, T.K. and Clark, A.H., 2011. Contrasting fluids and reservoirs in the contiguous Marcona and Mina Justa iron oxide-Cu (-Ag-Au) deposits, south-central Perú. Mineralium Deposita, 46: 677–706. https://doi.org/10.1007/s00126-011-0343-x
Fan, H.R., Hu, F.F., Wilde, S.A., Yang, K.F. and Jin, C.W., 2011. The Qiyugou gold–bearing breccia pipes, Xiong’ershan region, central China: Fluid–inclusion and stable–isotope evidence for an origin from magmatic fluids. International Geology Reviews 53(1): 25–45. https://doi.org/10.1080/00206810902875370
Fournier, R.O., 1999. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology, 94(8): 1193–1212. https://doi.org/10.2113/gsecongeo.94.8.1193
Golmohammadi, A., Karimpour, M.H., Malekzadeh Shafaroudi, A. and Mazaheri, S.A., 2014. Petrology and U-Pb zircon dating of intrusive rocks from A, C-south, and Dardvay districts, Sangan iron stone mine, Khaf. Journal of Economic Geology, 5(9): 155–174. (in Persian with English abstract) https://doi.org/10.22067/econg.v5i2.31716
Golmohammadi, A., Karimpour, M.H., Malekzadeh Shafaroudi, A. and Mazaheri, S.A., 2015. Alteration mineralization, and radiometric ages of the source pluton at the Sangan iron skarn deposit, northeastern Iran. Ore Geology Reviews, 65(2): 545–563. https://doi.org/10.1016/j.oregeorev.2014.07.005
Groves, D.I., Bierlein, F.P., Meinert, L.D. and Hitzman, M.W., 2010. Iron oxide copper–gold (IOCG) deposits through Earth history:implications for origin, lithospheric setting, and distinction fromother epigenetic iron oxide deposits. Economic Geology, 105(3): 641–654. https://doi.org/10.2113/gsecongeo.105.3.641
Gu, L.X., Wu, C.Z., Zhang, Z.Z., Franco, P., Ni, P., Chen, P.R. and Xiao, X.J., 2011. Comparative study of ore-forming fluids of hydrothermal copper-gold deposits in the lower Yangtze River Valley, China. International Geology Reviews, 53(5–6): 477–498. https://doi.org/10.1080/00206814.2010.533873
Haynes, D.W., Cross, K.C., Bills, R.T. and Reed, M.H., 1995. Olympic Dam ore genesis: a fluid-mixing model. Economic Geology, 90(2): 281–307. https://doi.org/10.2113/gsecongeo.90.2.281
Hitzman, M.W., 2002. Iron oxide-Cu–Au deposit: what, where, when, and why. In: T.M. Porter, (Editor), Hydrothermal Iron Oxide Copper-Gold And Related Deposits: a Global Perspective V1. PGC Publishing, Adelaide, pp. 9–26. Retrieved June 3–5, 2023 from https://books.google.com/books/about/Hydrothermal_Iron_Oxide_Copper_gold_Rela.html?id=NXPxAAAAMAAJ
Hitzman, M.W., Oreskes, N. and Einaudi, M.T., 1992. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U– Au–REE) deposits. Precambrian Research, 58(1–4): 241–287. https://doi.org/10.1016/0301-9268(92)90121-4
Hopper, D. and Correa, A., 2000. The Panulcillo and Teresa de Colmo copper deposits: two contrasting examples of Fe-ox-Cu-Au mineralisation from the Coastal Cordillera of Chile. In: T.M. Porter, (Editor), Hydrothermal iron oxide copper-gold and related deposits: A global perspective 2, PGC Publishing, Adelaide, 1: 177–189. Retrieved June 3–5, 2023 from https://www.geokniga.org/bookfiles/geokniga-14panulcillo-and-teresa-de-colmodhopper.pdf
Hossieni, R., Karimpour, M.H. and Malekzadeh Shafaroudi, A., 2018. Petrography, geochemistry, U-Pb dating and Sr-Nd isotopes of igneous rocks in Tannurjeh porphyry Au-Cu prospect area (NE Kashmar). Petrological Journal, 9(1): 45–70. (in Persian with English abstract) https://doi.org/10.22108/ijp.2017.82019.0
Injoque, E.J., 2002. Fe oxide-Cu-Au deposits in Peru: An integrated view. In: T.M. Porter, (Editor), Hydrothermal iron oxide copper-gold and related deposits. A global perspective 2, PGC Publishing, Adelaide, 2: 97–113. Retrieved June 3–5, 2023 from https://www.geokniga.org/bookfiles/geokniga-07iocg-peru.pdf
Karimpour, M.H., 2004. Mineralogy, Alteration, source rock, and tectonic setting of Iron–Oxides Cu–Au deposits and examples of Iran. 11th symposium of Iranian Crystallography and Mineralogy Society, Department of Geology, University of Yazad, Yazad, Iran, pp. 184–189. (in Persian with English abstract)
Karimpour, M.H., 2005. Comparison of Qaleh Zari Cu-Au-Ag deposit with other Iron Oxides Cu-Au (IOGC-type) deposits, a new classification. Iran. Iranian Journal of Crystallography and Mineralogy, 13(1): 167–184. Retrieved September 10, 2023 from https://ijcm.ir/article-1-734-en.html
Karimpour, M. H., Saadat, S. and Malekzadeh Shafaroudi, A., 2006. Geochemistry, petrology, and Mineralization of Tannurjeh porphyry gold-copper. Journal of Science (University of Tehran) (JSUT) 3(33): 173–185. (in Persian with English abstract)
Karimpour, M. H., Malekzadeh Shafaroudi, A., Mazloumi Bajestani, A., Keith Schader, R., Stern, Ch.R., Farmer, L. and Sadeghi, M., 2017. Geochemistry, geochronology, isotope and fluid inclusion studies of the Kuh-e-Zar deposit, Khaf-Kashmar-Bardaskan magmatic belt, NE Iran: Evidence of gold-rich iron oxide–copper–gold deposit. Journal of Geochemical Exploration, 183(Part A): 58–78. https://doi.org/10.1016/j.gexplo.2017.10.001
Lecumberri-Sanchez P., Steel-MacInnis M. and Bodnar R.J., 2012. A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochimica et Cosmochimica Acta, 92: 14–22. https://doi.org/10.1016/j.gca.2012.05.044
Malekzadeh Shafaroudi, A., Karimpour, M.H. and Golmohammadi, A., 2013. Zircon U–Pb geochronology and     petrology of intrusive rocks in the C-North and Baghak districts, Sangan iron mine, NE Iran. Journal of Asian Earth Sciences, 64: 256–271. https://doi.org/10.1016/j.jseaes.2012.12.028
Marschik, R. and Fontboté, L., 1998. Copper (–Iron) mineralization and superposition of alteration events in the Punta del Cobre belt, Northern Chile. In: F. Camus, R.H. Sillitoe, R. Peterson, (Editors), Andean copper deposits: new discoveries, mineralization, styles and metallogeny, Society of Economic Geology, Specific Publication, 5: 171–190. https://doi.org/10.5382/SP.05.12
Marschik, R. and Fontbot´e, L., 2001. The Candelaria-Punta del Cobre iron oxide Cu–Au–Zn–Ag deposits. Chile. Economic Geology, 96(8): 1799–1826. https://doi.org/10.2113/gsecongeo.96.8.1799  
Marschik, R., Fontignie, D., Chiaradia, M. and Voldet, P. 2003. Geochemical and Sr-Nd-Pb-O isotope composition of granitoids of the Early Cretaceous Copiaco plutonic complex (27° 30´S), Chile. Journal of South America Earth Sciences, 16(5): 381–398. https://doi.org/10.1016/S0895-9811(03)00104-4
Najmi, F., Malekzadeh Shafaroudi, A., Karimpour, M.H. and Simon, R.P., 2023, The Bahariyeh iron oxide copper–gold deposit, Khaf-Khashmar-Bardaskan magmatic belt, NE Iran: Constraints from geochemical, fluid inclusions, and O-S isotope studies. Ore Geology Reviews, 159: 105501. https://doi.org/10.1016/j.oregeorev.2023.105501
Oliver, N.H.S., Cleverley, J.S., Mark, G., Pollard, P.J., Fu, B., Marshall, L.J., Rubenach, M.J., Williams, P.J. and Baker, T., 2004. Modeling the role of sodic alteration in the genesis of iron–oxide–copper–gold deposits, eastern Mount Isa block, Australia. Economic Geology, 99(6): 1145–1176. https://doi.org/10.2113/gsecongeo.99.6.1145
Pollard, P.J., 2001. Sodic (-calcic) alteration in Fe–oxide–Cu–Au districts: an origin via unmixing of magmatic H2O–CO2– NaCl ± CaCl2–KCl fluids. Mineralum Deposita, 36: 93–100. https://doi.org/10.1007/s001260050289
Pollard, P.J., 2000. Evidence of a magmatic fluid and metal source for Fe-oxide Cu–Au mineralization. In: T.M.  Porter (Editor), Hydrothermal iron oxide copper–gold and related deposits: a global perspective 1, PGC Publishing, Adelaide, 1: 27–41. Retrieved June 3–5, 2023 from https://www.geokniga.org/bookfiles/geokniga-04magmatic-fluid-and-metal-sourcepjpollard.pdf
Roedder, E., 1984. Fluid inclusions. In: P.E. Ribbe (Editor), Reviews in Mineralogy 12. Mineralogy Society of America, 12:644 pp. Retrieved June 3–5, 2023 from https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1868459
Sahebi Khader, J., Malekzadeh Shafaroudi, A. and Mazloumi Bajestani, A., 2021. Mineralogy, structure and texture and geochemistry­ of Fadiheh Cu-Au mineral occurrence, northwestern Torbat Heydariyeh. Iranian Journal of Crystallography and Mineralogy, 30(1): 57–74. http://dx.doi.org/10.52547/ijcm.30.1.57
Shafaii Moghadam, H., Li, X-H., Ling, X-X., Santos, J.F., Stern, R.J., Li, Q. and Ghorbani, Gh., 2015. Eocene Kashmar granitoids (NE Iran): Petrogenetic constraints from U–Pb zircon geochronology and isotope geochemistry. Lithos, 216-617: 118-135. https://doi.org/10.1016/j.lithos.2014.12.012
Shepherd, T.J., Rankin, A.H. and Alderton, D.H.M., 1985. A practical guide to fluid inclusion studies. London, UK: Blackie. Press, London, 239 pp.
Sillitoe, R.M., 2003. Iron oxide-copper-gold deposits: An Andean view. Mineralum Deposita, 38: 787–812. https://doi.org/10.1007/s00126-003-0379-7
Simard, M., Beaudoin, G., Bernard, J. and Hupe, A., 2006. Metallogeny of the Mont-de-l’Aigle IOCG deposit, Gaspé Peninsula, Québec, Canada. Mineralum Deposita, 41: 607–636. https://doi.org/10.1007/s00126-006-0061-y
Steele-MacInnis, M., Lecumberri-Sanchez, P. and Bodnar, R.J., 2012. HOKIEFLINCS-H2O-NACL: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Computer in Geosciences, 49: 334–337. http://dx.doi.org/10.1016/j.cageo.2012.01.022
Taghadosi, H. and Malekzadeh Shafaroudi, A., 2018. Mineralogy, Alteration, geochemistry, and fluid inclusion studies of Fe oxide-copper mineralization of Namegh area, NE Kashmar. Iranian Journal of Crystallography and Mineralogy, 26(3): 541-554. (in Persian with English abstract) http://dx.doi.org/10.29252/ijcm.26.3.541
Vila, T., Lindsay, N. and Zamora, R., 1998. Geology of the Manto Verde copper deposit, northern Chile: a specularite-rich hydrothermal tectonic breccia related to the Atacama fault zone. In: F. Camus, R.H. Sillitoe, R. Petersen, (Editors), Andean copper deposits: new discoveries, mineralization, styles and metallogeny. Society of Economic Geology, Special Publication, 5: 157–170. https://doi.org/10.5382/SP.05.11
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Williams, P.J., Barton, M.D., Johnson, D.A., Fontboté, L., de Haller, A., Mark, G., Oliver, N.H.S. and Marschik, R., 2005. Iron oxide copper-gold deposits: Geology, Space-time distribution, and possible modes of origin. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb and J.P. Ricards (Editors), 100th Anniversary of Economic Geology, Society of Economic Geologists pp. 371–405. https://doi.org/10.5382/AV100.13
Yousefi, L., Haidarian Shahri, M.R. and Karimpour, M.H., 2008. Geology, mineralogy, fluid inclusion thermometry and ground magnetic of Shahrak Magnetite-Specularite Cu-Au prospecting area, Torbat-eHeydariyeh, Iran. Iranian Journal of Crystallography and Mineralogy, 16(3): 505–516. (in Persian with English abstract) Retrieved June 3, 2023 from http://ijcm.ir/article-1-631-en.html
Zhai, D.G., Liu, J.J., Wang, J.P., Yao, M.J., Wu, SH., Fu, C., Liu, Z.J., Wang, S.G. and Li, Y.X., 2013. Fluid evolution of the Jiawula Ag-Pb-Zn deposit, Inner Mongolia: mineralogical, fluid inclusion, and stable isotopic evidence. International Geology Reviews, 55(2): 204–224. https://doi.org/10.1080/00206814.2012.692905
Zhu, Z., 2016. Gold in iron oxide copper–gold deposits. Ore Geology Reviews, 72(Part 1): 37–42. https://doi.org/10.1016/j.oregeorev.2015.07.001
CAPTCHA Image