سنگ‌ شناسی و زمین شیمی گرانیتوئیدهای نوع I حرارت بالا در منطقه نوشا، استان مازندران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زمین‌شناسی، دانشکده علوم پایه، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

2 استادیار، گروه زمین‌شناسی، دانشکده علوم پایه، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

3 استادیار، دانشکده علوم پایه، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران

چکیده

منطقه مورد بررسی در حدود 30 کیلومتری جنوب رامسر، در زون البرز مرکزی واقع‌شده است. علاوه بر گرانیتوئیدهای نوشا (با سن حدود 56 میلیون سال)، رخنمون­ های موجود در این منطقه اغلب شامل واحدهای سنگی پالئوزوئیک و مزوزوئیک هستند. گرانیتوئیدهای نوشا از نظر سنگ ­شناسی ترکیب‌های دیوریت، سینیت، مونزونیت، مونزودیوریت، گرانودیوریت و کوارتز مونزونیت را دارا هستند و از نظر ترکیب کانی­ شناسی فلدسپات کانی اصلی است و برتری بافت در آنها متعلق به نوع دانه ­ای است. این سنگ‌ها از نظر سری ماگمایی کالک­ آلکالن پتاسیم بالا تا شوشونیتی بوده و متاآلومین هستند. ویژگی‌های زمین‌شیمیایی عناصر اصلی و کمیاب و همچنین ویژگی‌های سنگ‌نگاری حکایت از آن دارند که این گرانیتوئیدها در زمره گرانیت­ های نوع I و در عین حال بر اساس رفتار عناصر Ba، Ce و Y به انواع حرارت بالا تعلق دارند. غنی‏‌شدگی در عناصر سنگ دوست بزرگ یون و عناصر نادر خاکی سبک و تمرکز پایین عناصر نادر خاکی سنگین و عناصر با شدت میدان بالا به ‌همراه بی‏‌هنجاری منفی Nb و Ti در نمودارهای عنکبوتی، نشانه ماگماهای وابسته به پهنه فرورانش است. ماهیت I حرارت بالا و نیز ویژگی‌هایی نظیر نسبت ­های Y/Nb، Rb/Sr و Rb/Ba نشان می­ دهد که گرانیتوئیدهای نوشا خواص زمین‌شیمیایی هر دو مواد منشأ پوسته ­ای و گوشته ­ای را با نسبت‌های متفاوتی دارا هستند. بر مبنای نمودارهای متمایزکننده­ جایگاه تکتونوماگمایی و نیز ترکیب عناصر کمیاب، این گرانیتوئیدها متعلق به یک محیط حاشیه فعال قاره­ای هستند. ماگمای مادر از ذوب یک منشأ گوشته غنی‌شده، حاصل شده و حین صعود با پوسته قاره­ای آلایش یافته است.

کلیدواژه‌ها


Aghazadeh, M., 2009. Petrology and Geochemistry of Anzan, Khankandi and Shaivar Dagh granitoids (North and East of Ahar, Eastern Azerbaijan) with references to associated mineralization. Unpublished Ph.D Thesis, Tarbiat Moddares University, Tehran, Iran, 470 pp.
Aghazadeh, M. and Badrzadeh, Z., 2015. Petrology and petrogenesis of alkaline and calc-alkaline lamprophyres in the NW Iran. Scientific Quarterly Journal, Geosciences, 24(94): 87–102. (in persion with English abstract) https://doi.org/10.22071/gsj.2015.42745
Aghazadeh, M., Castro, A., Badrzadeh, Z. and Vogt, K., 2011. Post-collisional polycyclic plutonism from the Zagros hinterland. The Shaivar-Dagh plutonic complex Alborz belt, Iran. Geological Magazine, 148(5–6): 980–1008.  https://doi.org/10.1017/S0016756811000380
Aghazadeh, M., Castro, A., Rashidnejad Omran, N., Emami, M.H., Moinvaziri, H. and Badrzadeh, Z., 2010. The gabbro (shoshonitic)–monzonite–granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran. Journal of Asian Earth Sciences, 38(5): 199–219. https://doi.org/10.1016/j.jseaes.2010.01.002
Aghazadeh, M., Hou, Z. and Badrzadeh, Z., 2013. Bondar-e-Honza: An Oldest and Special Porphyry Copper (Molybdenum) Deposit in the Kerman Porphyry Copper Belt, Iran. Mineral Deposit Research for a High-tech World, 12th SGA Biennial Meeting, Uppsala, Sweden, 3(2013): 1412-1415. Retrieved January 21, 2023 from https://www.academia.edu/4740224/Bondar_e_Honza_An_oldest_and_special_porphyry_copper_molybdenum_deposit_in_the_Kerman_porphyry_copper_belt_Iran
Alavi, M., 1996. Tectonostratigraphy synthesis and structural style of the Alborz Mountain system in northern Iran. Journal of Geodynamics, 21(1): 1–33. https://doi.org/10.1016/0264-3707(95)00009-7
Annells, R.N., Arthurton, R.S., Bazely, R.A. and Davies, R.G., 1975. Explanatory text of the Qazvin and Rasht quadrangle map 1:250000, Geological Survey of Iran. Report, Nos. E3, E4, 94 pp.
Arjmandzadeh, R., Almasi, A., Nabatian, G., Li, Q., Nourian, S. and Jafarie, T., 2022. Zircon U–Pb dating, geochemistry, and geology of Shotorsang hypabyssal granitoids, southern Quchan (northeast of Iran). Petrological Journal, 13(3): 105–130. (in Persian with English abstract) https://doi.org/10.22108/ijp.2022.132228.1263 
Axen, G.J.P.S., Lam, M., Grove, D.F., Stockli, J. and Hassanzadeh, J., 2001. Exhumation of the west–central Alborz Mountains, Iran, Caspian subsidence, and collision–related tectonics. Geology, 29(6): 559–562.  https://doi.org/10.1130/0091-7613(2001)029<0559:EOTWCA>2.0.CO;2
Azizi, H. and Tsuboi, M., 2021. The Van Microplate: A New Microcontinent at the Junction of Iran, Turkey, and Armenia. Frontiers in Earth Science. 8: 1–15. https://doi.org/10.3389/feart.2020.574385
Bahajroy, M., Taki, S., Moazzen, M. and Ganji, A., 2022. Whole rock and mineral chemistry of intermediate intrusive rocks in the northern side of Shahroud River near Zardkooh in Guilan province (Iran). Petrological Journal, 13(3): 1–32. (in Persian with English abstract)  https://doi.org/10.22108/ijp.2022.132420.1267
Baharfiruzi, K. and Shafei, A., 2003. Geological 1:100000 scale map and report of Javaherdeh. Geological Survey of Iran, Iran.
Blatt, H., Tracy, R.J. and Owens, B.E., 2006. Petrology: Igneous, Sedimentary and Metamorphic. Freeman and Company 530 pp. Retrieved November 20, 2022 from https://books.google.com/books/about/Petrology.html?id=lha3FmesddoC
Bonin, B., 2004. Do coeval mafic and felsic magmas in post-collisional to within plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review.  Lithos, 78(1–2): 1–24. https://doi.org/10.1016/j.lithos.2004.04.042
Brown, G.C., Thorpe, R.S. and Webb, P.C., 1984. The geochemical characteristics of granitoids in contracting arcs and comments on magma sources. Journal of the Geological Society, 141(3): 413–426. https://doi.org/10.1144/gsjgs.141.3.0413
Castro, A., Aghazadeh, M., Badrzadeh, Z. and Chichorro, M., 2013. Late Eocene–Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source. Lithos, 180–181: 109–127. http://dx.doi.org/10.1016/j.lithos.2013.08.003     
Chappell, B.W., Bryant, C.J., Wyborn, D. and White, A.J.R., 1998. High and Low Temperature I-type Granites. Resource Geology, 48(4): 225–235. https://doi.org/10.1111/j.1751-3928.1998.tb00020.x
Chappell, B.W. and White, A.J.R., 1974. Two contrasting granite types. Pacific Geology, 6(8): 173–174. Retrieved January 21, 2023 from https://typeset.io/papers/two-contrasting-granite-types-2nfxi6nemc
Chappell, B.W. and White, A.G.R., 1992. I and S type granites in the Lachlan fold belt. Environmental Science Transactions of The Royal Society of Edinburgh, 83(1–2): 1–26. https://doi.org/10.1017/S0263593300007720Ear
Chappell, B.W. and White, A.J.R., 2001. Two contrasting granite types: 25years later. Australian Journal of Earth Sciences, 48(4): 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
Clarke, D.B., 1981. Peraluminous granites. The Canadian Mineralogist, 19(1) :1–2. Retrieved January 21, 2023 from https://pubs.geoscienceworld.org/canmin/article-abstract/19/1/1/267046/Symposium-ProceedingsTHE-CANADIAN-MINERALOGIST
Clarke, D.B., 1992. Granitoid rocks. Chapman & Hall, London, 283 pp.
Collins, W.J., Beams, S.D., White, A.J.R. and Chappell, B.W., 1982. Nature and origin of A-type granites with particular reference to south-eastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. https://doi.org/10.1007/BF00374895
Condie, K.C., 1989. Plate Tectonic and crustal evolution. Pergamon press, Oxford, New York, Beijing, Frankfurt, Sao Paulo, Sydney, Tokyo, Toronto, 476 pp.
Conticelli, S., Guarnieri, L., Farinelli, A., Mattei, M., Vanzinelli, R., Bianchini, G., Boari, E., Tommasini, S., Tiepolo, M., Prelevic, D. and Ven-Turelli, G., 2009. Trace elements and Sr–Nd–Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos, 107(1–2): 68–92. https://doi.org/10.1016/j.lithos.2008.07.016
Eby, G.N., 1990. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1–2): 115–134. https://doi.org/10.1016/0024-4937(90)90043-Z
Eby, G.N., 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20(7): 641–644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Fan, W.M., Gue, F., Wang, Y.J. and Lin, G., 2003. Late Mesozoic calc-alkaline volcanism of orogenic extension in the northern Da Hinggan mountains, northern China. Journal of Volcanology and Geothermal Research, 121(1–2): 115–135. https://doi.org/10.1016/S0377-0273(02)00415-8
Foley, S. and Peccerillo, A., 1992. Potassic and ultrapotassic magmas and their origin. Lithos, 28(3–6): 181–185. https://doi.org/10.1016/0024-4937(92)90005-J
Foley, S.F. and Wheller, G.E., 1990. Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: the role of residual titanites. Chemical Geology, 85(1–2): 1–18. https://doi.org/10.1016/0009-2541(90)90120-V
Gass, I.G., Lippard, S.J. and Shelton, A.W., 1984. Ophiolites and Oceanic Lithosphere. Geological Society Special Publication, London, UK, 413 pp.
Girardi, J.D., Patchett, P.J., Ducea, M.N., Gehrels, G.E. and Cecil, M.R., 2012. Elemental and isotopic evidence for granitoid genesis from deep-seated sources in the Coast Mountains batholith, British Columbia. Journal of Petrology, 53(7): 1505–1536. https://doi.org/10.1093/petrology/egs024
Golonka, J., 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381(1–4): 235–273. https://doi.org/10.1016/j.tecto.2002.06.004
Hofmann, A.W., 1997.  Mantle geochemistry: the message from oceanic volcanism. Nature, 385(6613): 219–229. https://doi.org/10.1038/385219a0
Ilnicki, S., 2010. Petrogenesis of continental mafic dykes from the Izere complex Krakonosze-Izra Block (West Sudetes, SW Poland). International Journal of Earth Sciences, 99(4): 745–773. https://doi.org/10.1007/s00531-009-0433-5
Irvine, T. and Baragar, W.R.A., 1971. A guide to the Chemical classification of the common volcanic rocks. Canadian Journal of earth Science Letters, 8(5): 523–548. https://doi.org/10.1139/e71-055
Kay, S.M. and Mpodozis, C., 2002. Magmatism as a probe to Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab. Journal of South American Earth Sciences, 15(1): 39–57. https://doi.org/10.1016/S0895-9811(02)00005-6
Koprubasi, N. and Aldanmaz, E., 2004. Geochemical constraints on the petrogenesis of Cenozoic I-type granitoids in Northwest Anatolia, Turkey: evidence for magma generation by lithospheric delamination in a post-collisional setting. International Geology Review, 46(8): 705–729. https://doi.org/10.2747/0020-6814.46.8.705
Maniar, P.D. and Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Masson, F., Djamour, Y., Van Gorp, S., Chery, J., Tatar, M., Tavakoli, F.,  Nankali, H. and Vernant, P., 2006. Extension in NW Iran driven by the motion of the South Caspian Basin. Earth and Planetary Science Letters, 252(1–2): 180-188. https://doi.org/10.1016/j.epsl.2006.09.038
McDonough, W.F. and Sun, S., 1995. The composition of the Earth. Chemical Geology, 120(3–4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
McDonough, W.F., Sun, S., Ringwood, A.E., Jagoutz, E. and Hofmann, A.W., 1992. Potassium, Rubidium, and Cesium in the Earth and Moon and the evolution of the earth’s mantle. Geochimica et Cosmochimica Acta, 56(3): 1001–1012. https://doi.org/10.1016/0016-7037(92)90043-I
Middlemost, E.A.K., 1987. Magmas and Magmatic Rocks, An Introduction to Igneous Petrology, ongman Group Ltd., London, New York, 266 pp.
Mokhtari, M.A.A., Moinvaziri, H., Ghorbani, M.R. and Mehrpartou, M., 2010. Petrology and petrogenesis of Kamtal intrusion, Eastern Azarbaijan, NW Iran. Central European Geology, 53(1): 79–96. https://doi.org/10.1556/ceugeol.53.2010.1.5
Muller, D. and Groves, D.I., 1997. Potassic igneous rocks and associated gold-copper mineralization. Springer Verlag, 242 pp. https://doi.org/10.1007/978-3-319-92979-8
Nabatian, G, Ghaderi, M., Neubauer, F., Honarmand, H., Liu, X., Dong, Y., Jiang, S.HY., Quadt, A., Bernroider, M., 2014. Petrogenesis of Tarom high-potassic granitoids in the Alborz–Azarbaijan belt, Iran: Geochemical, U–Pb zircon and Sr–Nd–Pb isotopic constraints. Lithos, 184–187: 324–345. https://doi.org/10.1016/j.lithos.2013.11.002
Nabavi, M.H., 1976. An Introduction to the Geology of Iran. Geologic Survey of Iran, Tehran, 109 pp. (in Persian)
Pearce, J.A., 1982. Trace element characteristics of lavas from destructive plate boundaries. In: R.S. Thorpe (Editor), Orogenic andesites and related rocks. John Wiley and Sons, U.K., pp. 528–548. Retrieved January 21, 2023 from https://orca.cardiff.ac.uk/id/eprint/8625
Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
Pearce, J.A., Harris, N.B.W. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
Pearce, J.A. and Parkinson, I.J., 1993. Trace element models for mantle melting: Application to volcanic arc petrogenesis, in Magmatic Processes and Plate Tectonics. In: H.M.  Prichard, T. Alabaster, N.B.W. Harris and C.R. Neary (Editors), Geological Society Special Publication, 76(1): 373–403. https://doi.org/10.1144/GSL.SP.1993.076.01.19
Pearce, J.A. and Peate, D.W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251–285. https://doi.org/10.1146/annurev.ea.23.050195.001343
Peccerillo, R. and Taylor, S.R., 1976. Geochemistry of Eocene calk-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineral and Petrology, 58(1): 63–81. http://dx.doi.org/10.1007/BF00384745
Pitcher, W.S., 1982. Granite type and tectonic environment. In: K.J. Hsu (Editor), Mountain building processes, Academic press. London, pp. 19-40. Retrieved January 21, 2023 from https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9679477
Robertson, A.H.F., 2002. Overview of genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos, 65(1–2): 1–67. https://doi.org/10.1016/S0024-4937(02)00160-3
Rollinson, H.‌R., 1993. Using geochemical data: Evaluation, presentation, interpretation. John Wiley and Sons, 325 pp. https://doi.org/10.4324/9781315845548
Roy, A., Sarkar, A., Jeyakumar, S., Aggerawal, K. and Ebihara, M., 2002. Sm-Nd age and mantle source characteristics of The Dhanjori volcanic rocks, Eastern India. Geochemical Journal, 36(5): 503–518. https://doi.org/10.2343/geochemj.36.503
Shand, S.J., 1950. Eruptive rocks their genesis, composition, classification and their relation to ore deposit. Thomas Murby and Co, London, 488 pp. Retrieved January 21, 2023 from https://www.indianculture.gov.in/rarebooks/eruptive-rocks-their-genesis-composition-classification-and-their-relation-ore-deposits
Shelly, D., 1992. Igneous and metamorphic rocks under the microscope. Chapman and Hall, London, UK, 445 pp. https://doi.org/10.1180/minmag.1993.057.388.25
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Editors), Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Taki, S., 2011. Intrusives around Pirkooh village in western Alborz: an example of magmatic differentiation via fractional crystallization. Journal of Earth and Resources, 4(3): 11–19. Retrieved November 20, 2022 from https://www.sid.ir/paper/164348/en
Tankut, A., Wilson, M. and Yihunie, T., 1998. Geochemistry and tectonic setting of Tertiary volcanism in the Guvem area, Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 85(1–4): 285–301. https://doi.org/10.1016/S0377-0273(98)00060-2
Taylor, S.R. and McLennan, S.M., 1985. The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford, 312 pp. https://doi.org/10.1002/gj.3350210116
Teimouri, S.S., 2011. Petrology and volcanic facies analysis in south of Jirandeh, East of Lushan, Northwest of Qazvin. Ph.D. Thesis, Shahrood University of Technology, Shahrood, Iran, 174 pp.
Turner, S., Hawkesworth, C., Gallagher, K., Stewart, K., Peate, D. and Mantovani, M., 1996. Mantle plumes, flood basalts, and thermal models for melt generation beneath continents: assessment of a conductive heating model and application to the Parana. Journal of Geophysical Research, 101(B5): 11503–11518.  https://doi.org/10.1029/96JB00430
 Vernon, R.H., 2004. A Practical Guide to Rock Microstructure. Cambridge University Press, Cambridge, 594 pp. https://doi.org/10.1017/CBO9780511807206
Wang, K., Plank, T., Walker, JD. and Smith, E.I., 2002. A mantle melting profile across the Basin and Range, SW USA. Journal of Geophysical Research: Solid Earth, 107(B1): ECV5-1–ECV5-21. https://doi.org/10.1029/2001JB000209
Wang, K.L., Chung, A.S.L., Oreilly, S.Y., Sun, S.S., Shinjo, R. and Chen, C.H., 2004. Geochemical Constraints for the Genesis of Post-Collisional Magmatism and the Geodynamic Evolution of the Northern Taiwan Region. Journal of Petrology, 45(5): 975–1011. https://doi.org/10.1093/petrology/egh001
Wang, J.‌S., Li, Y., Wang, L., Cao, Z.‌G., Zhang, Y. X. and Li, Z. F., 2008. Analysis of the formation mechanism of Xiamen Subsea tunnel fault. In: M. Cai and J. Wang (Editors), Boundaries of Rock Mechanics: Recent Advances and Challenges for the 21st Century. Taylor & Francis Group, London, pp. 533–537. Retrieved November 20, 2022 from https://www.taylorfrancis.com/chapters/edit/10.1201/9780203883204-107/analysis-formation-mechanism-xiamen-subsea-tunnel-fault-wang-li-wang-cao-zhang-li
Watson, E. B., 1982. Melt infiltration and magma evolution. Geology, 10 (5): 236–240.  https://doi.org/10.1130/0091-7613(1982)10<236:MIAME>2.0.CO;2
Whalen, J.D., Currie, K.L. and Chappell, E.W., 1987. A-type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
Whalen, J.B., McNicoll, V., Staal, C.R., Lissenberg, J., Longstaffe, F.J., Jenner, G.A. and Breeman, O.B., 2006. Spatial, temporal and geochemical characteristics of Silurian collision-zone magmatism. Newfoundland Appalachians: An example of a rapidly evolving magmatic system related to slab break-off. Lithos, 89(3–4): 377–404. https://doi.org/10.1016/j.lithos.2005.12.011
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London, 466 pp.
Winter, J.D., 2001. An introduction to igneous and metamorphic petrology. New Jersey Prentice Hall, 697 pp.
Yuguchi, T. and Nishiyama T., 2008. The mechanism of myrmekite formation deduced from steady diffusion modeling based on petrography: Case study of the Okueyama granitic body, Kyushu, Japan. Lithos, 106(3–4): 237–260. https://doi.org/10.1016/j.lithos.2008.07.017
CAPTCHA Image