سنگ‌ نگاری، زمین‌ شیمی و سنگ‌ زایی توده نفوذی وینه، جنوب البرز مرکزی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده علوم زمین، گروه ژئوشیمی، دانشگاه خوارزمی، تهران، ایران

2 دانشجوی دکتری، دانشکده زمین‌ شناسی، پردیس علوم، دانشگاه تهران، تهران، ایران

3 دانشیار، دانشکده علوم زمین، گروه ژئوشیمی، دانشگاه خوارزمی، تهران، ایران

چکیده

توده نفوذی وینه، واقع در شمال شهرستان کرج یکی از چندین توده نفوذی جنوب البرز مرکزی در ائوسن پایانی است که در سازند رسوبی- آتشفشانی کرج نفوذ‌کرده است. این توده متشکل از چهار واحد سنگی مونزوگابرویی، مونزودیوریتی، مونزونیتی و سینیتی است که از لحاظ زمین‌شیمیایی ماهیت آلکالن و شوشونیتی دارد و در نمودارهای زمین‌شیمیایی روندهای پیوستگی و خویشاوندی از راه تبلور تفریقی نشان می‌دهند. این سنگ‌ها از مجموعه کانی‌های پلاژیوکلاز، الیوین، کلینوپیروکسن، آمفیبول، ارتوکلاز، کوارتز و کانی‌های فرعی آپاتیت، بیوتیت و کدر و ثانویه اپیدوت، کلریت، ایدنگزیت و کلسیت تشکیل شده‌اند و بافت غالب آنها هیپیدیومورف گرانولار است.  بررسی‌های زمین‌شیمیایی این سنگ‌ها نظیر غنی‌شدگی از LREE در مقایسه با HREE و آنومالی مثبت Pb و تهی‌شدگی عناصر Ti، Zr، Ta و Nb نشان‌دهنده وابستگی ماگماهای اولیه این سنگ‌ها به حاشیه فعال قاره‌ای است که تحت‌تأثیر مؤلفه‌های فرورانش اقیانوس نئوتتیس به زیر صفحه ایران مرکزی بوده است. از طرفی بر اساس نمودارهای تعیین جایگاه زمین‌ساختی، سنگ‌های نفوذی منطقه به ماگماتیسم حوضه‌ کششی پشت‌کمان نسبت‌داده می‌شوند. بنابراین، چنین تصور می‌شود که ماگمای تشکیل‌دهنده توده نفوذی وینه از یک گوشته غنی‌شده یا متاسوماتیزه با ترکیب اسپینل لرزولیت با درجه ذوب‌بخشی پایین (3 تا 5 درصد) در اعماق حدود 60 تا 65 کیلومتری، تشکیل‌شده که در حین صعود به سطح زمین تحت‌تأثیر فرایند هضم و تیلور تفریقی در مخازن ماگمایی کم‌عمق جای‌گیری کرده است.

کلیدواژه‌ها


Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B. and Wortel, M.J.R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine, 148(5–6): 692–725. https://doi.org/10.1017/S001675681100046X
Ahmadvand, A., Ghorbani, M.R., Mokhtari, M.A.A., Chen, Y., Amidon, W., Santos, J.F. and Paydari, M., 2020. Lithospheric mantle, asthenosphere, slab and crustal contribution to petrogenesis of Eocene to Miocene volcanic rocks from the west Alborz Magmatic Assemblage, SE Ahar, Iran. Geological Magazine, 157(3): 1–32. https://doi.org/10.1017/S0016756820000527
Alavi, M., 1996. Tectonostratigraphic synthesis and structural style of the Alborz mountain system in northern Iran. Journal of Geodynamics, 21(1): 1–33. https://doi.org/10.1016/0264-3707(95)00009-7
Aldanmaz, E., Pearce, J.‌A., Thirlwall, M.‌F. and Mitchell, J. G., 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research 102(1–2):  67–95. https://doi.org/10.1016/S0377-0273(00)00182-7
Allen, M.B., Ghassemi, M.R., Shahrabi, M. and Qorashi, M., 2003. Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. Journal of Structural Geology 25(5): 659–672. https://doi.org/10.1016/S0191-8141(02)00064-0
Amini, M. and Emami, H., 1993. Geological map of Tehran, scale 1:100,000. Geological Survey of Iran.
Ashrafi, N., Jahangiri, A., Hasebe, N. and Eby, N., 2018. Petrology, geochemistry and geodynamic setting of Eocene-Oligocene alkaline intrusions from the Alborz- Azerbaijan magmatic belt, NW Iran. Geochemistry, 78‌(4): 432–461. https://doi.org/10.1016/j.chemer.2018.10.004
Asiabanha, A. and Foden, J., 2012. Post-collisional transition from an extensional volcanosedimentary basin to a continental arc in the Alborz Ranges, N-Iran. Lithos 148: 98–111. https://doi.org/10.1016/j.lithos.2012.05.014
Atherton, M.P. and Ghani, A.A., 2002. Slab Breakoff: A model for Caledonian, Late granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos, 62(3-4): 65–85. https://doi.org/10.1016/S0024-4937(02)00111-1
Azer, M.K. and Farahat, E.S., 2011. Late Neoproterozoic volcano-sedimentary successions of Wadi Rufaiyil, southern Sinai, Egypt: A case of transition from late- to post-collisional magmatism. Journal of Asian Earth Sciences, 42(6): 1187–1203. https://doi.org/10.1016/j.jseaes.2011.06.016
Ballato, P., Uba, C.E., Landgraf, A., Strecker, M.R., Sudo, M., Stockli, D., Friedrich, A. and Tabatabaei, S.H., 2011. Arabia-Eurasia continental collision: Insights from Late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. Geological Society of American Bulletin, 123(1–2): 106–131. http://dx.doi.org/10.1130/B30091.1
Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Science, 18(2): 210–265. https://doi.org/10.1139/e81-019
Boynton, W.V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: P. Henderson (Editor), Rare Earth Element Geochemistry. Elsevier, Amsterdam, volume 2, pp.63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3
Cameron, B.I., Walker, J.A., Carr, M.J., Patino, L.C., Matias, O. and Feigenson, M.D., 2003. Flux versus decompression melting at stratovolcanos in southeastern Guatemala. Journal of Volcanology and Geothermal Research, 119(1–4): 21–50. https://doi.org/10.1016/S0377-0273(02)00304-9
Coban, H., Karacık, Z. and Ece, Ö., 2012. Source contamination and tectonomagmatic signals of overlapping Early to Middle Miocene orogenic magmas associated with shallow continental subduction and asthenospheric mantle flows in Western Anatolia: A record from Simav (Kütahya) region. Lithos, 140–141: 119–141. https://doi.org/10.1016/j.lithos.2011.12.006
Dedual, E., 1967. Zur Geology des mittleren und unteren Karaj Tales, zental Elbourz (Iran). ETH University, Zurrich, Switzerland, 123 pp.
Floyd, P.A., Kelling, G., Gökçen, S.L. and Gökçen, N., 1991. Geochemistry and tectonic environment of basaltic rocks from the Misis ophiolitic mélange, south Turkey. Chemical Geology 89(3-4): 263–280. https://doi.org/10.1016/0009-2541(91)90020-R
Hassanzadeh, J., Axen, G.J., Guest, B., Stockli, D.F.  and Ghazi, A.M., 2004. The Alborz and NW Urumieh-Dokhtar magmatic belts, Iran: rifted parts of a single ancestral arc. Geological Society of America Abstracts with program 36(5): 434. Retrieved September 28, 2023, from https://scholar.google.com/citations?view_op=view_citation&hl=en&user=kze419gAAAAJ&cstart=100&pagesize=100&sortby=pubdate&citation_for_view=kze419gAAAAJ:5nxA0vEk-isC
Heidari, S., Tabbakh Shabani, A.A., Hassanpour, Sh. and Maghdour-Mashhour, R., 2022. Petrology of the Paleogene shoshonitic volcanism in north Sarab area, NW Iran: Geochemical, Ar-Ar dating and Sr-Nd-Pb isotopic constraints. Journal of Asian Earth Sciences: X, 8: 100–109. https://doi.org/10.1016/j.jaesx.2022.100109
Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature, 385: 219–229. https://doi.org/10.1038/385219a0
Jenner, G.A., Dunning, G.R., Malpas, J., Brown, M. and Brace, T., 1991. Bay of islands and little port complexes, revisited age, geochemical and isotopic evidence confirm suprasubduction- zone origin. Canadian Journal of Earth Sciences 28(10): 1635–1652. https://doi.org/10.1139/e91-146
Karsli, O., Aydin, F., Uysal, I., Dokuz, A., Kumral, M., Kandemir, R., Budakoglu, M. and Ketenci, M., 2018. Latest Cretaceous “A2-type” granites in the Sakarya Zone, NE Turkey: Partial melting of mafic lower crust in response to roll-back of Neo-Tethyan oceanic lithosphere. Lithos, 302–303: 312–328. https://doi.org/10.1016/j.lithos.2017.12.025
La Fleche, M.R., Camire, G. and Jenner, G.A., 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Quebec, Canada. Chemical Geology, 148(3-4): 115–136. https://doi.org/10.1016/S0009-2541(98)00002-3
Maghdour-Mashhour, R., Esmaeily, D., Tabbakh Shabani, A.A., Chiaradia, M. and Latypov, R., 2015. Petrology and geochemistry of the Karaj Dam basement sill: Implications for geodynamic evolution of the Alborz magmatic belt. Geochemistry, 75(2): 237–260. https://doi.org/10.1016/j.chemer.2015.03.001
McKenzie, D. and O'Nions, R.K., 1991. Partial melt distribution from inversion of rare earth element concentratons. Journal of Petrology, 32(5): 1021–1091. https://doi.org/10.1093/petrology/32.5.1021
Middlemost, E.A.K., 1989. Iron oxidation ratios, norms and the classification of volcanic rocks. Chemical Geology, 77(1): 19–26. http://dx.doi.org/10.1016/0009-2541(89)90011-9
Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock systems. Earth-Sciences Reviews 37(3–4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
Muller, D. and Groves, D.I., 1997. Potassic igneous rocks and associated gold-copper mineralization. Springer-Verlag, Berlin, Heidelberg, 238 pp. http://dx.doi.org/10.1007/978-3-319-23051-1
Peccerillo, A. and Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58: 63–81. https://doi.org/10.1007/BF00384745
Rollinson, H., 1993. Using Geochemical Data: Evolution, Presentation, Interpretation. Longman Scientific and Technical, UK. 344 pp. 
Sepidbar, F., Orhan Karsli O., Palin R.M. and Casett, F., 2021. Cenozoic temporal variation of crustal thickness in the Urumieh-Dokhtar and Alborz magmatic belts, Iran. Lithos, 400–401: 10640. https://doi.org/10.1016/j.lithos.2021.106401
Shafaii Moghadam, H., Griffin, W.L., Kirchenbaur, M., Garbe-Schonberg, D., Zakie Khedr, M., Kimura, J.I., Stern, R.J., Ghorbani, G., Murphy, R., O’Reilly, S.Y., Arai, S.H. and Maghdour-Mashhour, R., 2018. Roll-Back, Extension and Mantle Upwelling Triggered Eocene Potassic Magmatism in NW Iran. Journal of Petrology, 59 (7): 1417–1465. https://doi.org/10.1093/petrology/egy067
Shahidi, A., Barrier, E., Brunet, M.F., Saidi, A. and Muller, C., 2007. Tectonic evolution of Alborz since Mesozoic (Iran). Europian Geological Union (EGU) Conference, 9, 11074. Retrieved September 28, 2023, from https://www.researchgate.net/publication/258505594_Tectonic_Evolution_of_the_Alborz_in_Mesozoic_and_Cenozoic#fullTextFileContent
Smith, E.I., Sanchez, A., Walker, J.D. and Wang, K., 1999. Geochemistry of mafic magmas in the Hurricane Volcanic field, Utah: implications for small- and large- scale chemical variability of the lithospheric mantle. Journal of Geology, 107(4): 433–448. https://doi.org/10.1086/314355
Srivastava, R.K. and Singh, R.K., 2004. Trace element geochemistry and genesis of Precambrian subalkaline mafic dykes from the central Indian craton: evidence for mantle metasomatism. Journal of Asian Earth Sciences, 23(3): 373–389. https://doi.org/10.1016/S1367-9120(03)00150-0
Stocklin, J., 1974. Northern Iran: Alborz Mountains. Geological Society of London, Special Publication 4: 213–234. https://doi.org/10.1144/GSL.SP.2005.004.01.12
Streckeisen, A.L. and Le Maitre, R.W., 1979. A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrbuch fur Mineralogie, Abhandlungen, 136: 169–206. Retrieved September 28, 2023, from http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM8020382343
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.‌D. Saunders and M.J. Norry (Editors), Magmatism in Ocean Basins Geological Society of London, Special Publication 313–345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19              
Varol, E., Temel, A., Yürür, T., Gourgaud, A. and Bellon, H., 2014. Petrogenesis of the Neogene bimodal magmatism of the Galatean Volcanic Province, Central Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 280: 14-29. https://doi.org/10.1016/j.jvolgeores.2014.04.014
Verdel, C., Wernicke, B.P., Hassanzadeh, J. and Guest, B., 2011. A Paleogene extensional arc flare-up in Iran. Tectonics, 30(3): 1–20. Retrieved September 28, 2023, from https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010TC002809
Vincent, S.J., Allen, M.B., Ismail-Zadeh, A.D., Flecker, R., Foland, K.A. and Simmons, M.D., 2005. Insights from the Talysh of Azerbaijan into the Paleogene evolution of the south Caspian region. Geological Society of America Bulletin 117(11–12): 1513–1533. https://doi.org/10.1130/B25690.1
Winchester, J.A. and Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Wood, D.A., 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11–30. https://doi.org/10.1016/0012-821X(80)90116-8
CAPTCHA Image